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Difference Methods for Problems 
With Different Time Scales* 

By Robert E. Scheid, Jr. 

Abstract. We consider the use of difference methods for weakly nonlinear systems of ordinary 
differential equations with rapidly oscillating solutions and develop a general approach which 
depends only on the smoothness of the coefficients and the nonlinearities. In particular, one is 
led to a strategy which is suitable for the detection and resolution of turning points in such 
systems. A computational example is presented. 

1. Introduction. Mathematical modeling of many physical phenomena often leads 
to the study of differential systems whose stiffness gives rise to rapidly oscillating 
solutions. Physical examples as well as a detailed bibliography can be found in [5] 
and [6], where we developed an asymptotic theory for weakly nonlinear, highly 
oscillatory systems of ordinary differential equations and introduced corresponding 
methods which are suitable away from turning points for accurate computation with 
large time steps. Here we extend our results to achieve a general theory on difference 
methods for such problems. Our approach depends only on the smoothness of the 
coefficients and the nonlinearities and leads to a strategy which is suitable for the 
detection and resolution of turning points in such systems. 

To illustrate the ideas, we consider the scalar problem: 

(1.1) Z' = ia(t)z + Z2, z(0) = zo, 0 < t < T 

where a(t) is a smooth real function with 

(1.2a) infla(t)I > M> 1, 

(1.2b) supldva/dtI/lla(t)l < K (v = 1,2,. . ., p). 
t 

Here K is a constant of moderate size. This expression is somewhat vague but often 
it is satisfactory to say that K is a constant of moderate size if 

(1.3) Kh < .1, 
where h is the maximal step size to be used in the computation (cf. Kreiss [2]); that 
is, we approximate the solution on the grid { tj }, where 
(1.4) to = 0, tN= T, hj = tj+ - tj, h = maxlhl. 
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We assume that the coefficients of the system (1.1) are known at the grid points. 
With the simple change of variables 

(1.5) z = exp(ip(t))x, p(t) = fa(t) dt, 
0 

we reach a formulation in which the right-hand side is bounded independently of M: 

(1.6) x = exp(ip(t))x2, x(O) = x0:= z0, 0 < t < T. 

This system, whose coefficients are also assumed to be known at the grid points, is 
separable, and so the solution is readily obtained by integration: 

00 

(1.7) x = Xo{1/[ 1-x0F(t)] } Xo E [XOF( t)] k 

k=0 

F(t) = J (exp(ip(t))) dt. 
0 

For sufficiently large M integration by parts gives an asymptotic expansion for F(t): 

(1.8) F(t) - exp(ip(t)) {[-i/a(t)] +[a'(t)/(a(t))3] + } lo 

And by (1.7) we have a corresponding expansion for x(t). The kth term of the 
expansion (1.8) has the form 

(1.9) exp(ip(t))(1/(a(t)))kfk({(dva/dtv)/a(t)}), 1 < v < k - 1, 

and the remainder Rk(t) after k terms can be bounded in accordance with (1.2): 

(1.10) IRk(t)I - Rk(K)/Mk?l. 

Here Rk is bounded in terms of constants of moderate size. To approximate x(t), 
one need only compute with a time step sufficient for the resolution of the fk( ), and 
if the corresponding errors are dominated by those arising from the truncation of the 
expansion then, for sufficiently large M and for x(tj) given, a bound of the form 
(1.10) gives the error after a time step hi. Clearly, the infimum and supremum in 
(1.2) can be taken locally since we need only develop a principle which allows us to 
calculate from grid point to grid point. Thus, as ja(t)l becomes smaller, more terms 
must be included in the expansion to ensure an adequate approximation. 

In [5] we demonstrated that even for more general systems such expansions can be 
generated automatically by means of a strategy of successive linearization combined 
with integration by parts. However, without an assumption such as (1.2a) this 
procedure is unworkable because the mathematical structure of F(t) changes signifi- 
cantly over any interval where ja(t)l approaches zero. This behavior characterizes 
the difficulty of the general theory at a turning point, where the expansions first 
become nonuniform and eventually break down entirely due to the failure of 
integration by parts. 

When aa(t)l becomes sufficiently small, however, it is reasonable to attempt to 
resolve it fully. Let us assume that ja(t)l is of moderate size as specified by (1.3). On 
the grid defined by (1.4) we introduce the difference operator 

(1.11) Aa(tj) = a(tj+?) - a(tj)- 
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For v < p we then have 

(1.12) lYexp(ip(tj))l < R(K)hvla(t*)Iv (tj < t* < t"+) 
where R is bounded in accordance with (1.2b). Thus, the system (1.6) is suitable for 
approximation by standard difference methods. If x(tj) is known exactly, then the 
error with a standard qth order method after the step h. has a bound of the form 

(1.13) la(tj)lqhq+k(K) 
where R is bounded in accordance with (1.2b). A similar bound holds when (1.2a) is 
violated as long as la(t)I remains bounded (see, for example, Lambert [4]). 

Thus, we have two different procedures for resolving the solution of the differen- 
tial equation (1.6). To combine the methods we first must replace (1.2) with an 
assumption that remains appropriate as Ia(t)I approaches zero. Thus, we assume 

(1.14) sup [ldva/dtvllmax{la(t)l,}] < K (v = 1,2, ,p) 

where K is a constant of moderate size. A similar bound was introduced by Kreiss 
[2] to develop a theory of difference methods for stiff problems which are essentially 
nonoscillatory. This requirement is apparently necessary for any approximation 
scheme based on finite differences, for otherwise the point values of the function 
cannot provide an adequate representation at the grid points. Thus, from (1.11) and 
(1.14) we have 

(1.15) vYa(tj) < hvK sup [max{la(s)I,1}] (v <p). 
t, <s<t+v 

Replacing assumption (1.2) by assumption (1.14) yields an appropriate modification 
of the estimate (1.13): 

(1.16) maxt la(tj) lq, l } hq+kR(K). 

Here R is bounded in accordance with (1.14). Unlike (1.13) this estimate for the 
error after a time step hi remains valid even as la(t)l approaches zero. The estimate 
(1.10) for the truncation of the asymptotic expansion remains valid as long as (1.14) 
and (1.2a) hold. 

When la(t)l is sufficiently large one proceeds as in (1.8), where the derived 
asymptotic expansion decays in reciprocal powers of Ia (t) I and the error is bounded 
in accordance with the estimate (1.10). As la(t)l decreases in magnitude, more terms 
in the expansion must be included to ensure the same accuracy. Comparing the 
bounds (1.10) and (1.16) and assuming the amount of work for each procedure is 
comparable for some given k and q, we conclude that an appropriate point of 
transition from the first method to the second occurs when 

(1.17) la(t)l (X2/R)1/(k+q+l)h-(q+1)/(k+q+l) 

since the local errors are approximately equal. If the switching is made according to 
this rule, then, for fixed K and sufficiently small h, the solution is fully resolved only 
when la(t)l is of moderate size as specified by (1.3). Of course this procedure can be 
reversed if Ia (t) I again becomes large as in a passage through resonance (cf. Example 
4.1). 

The changeover from one method to the other then marks the transition between a 
fast mode which requires asymptotic analysis and a slow mode which requires full 
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resolution, and correspondingly the values of k, h and q determine a trade-off 
between the number of integrations needed in one region and the number of grid 
points needed in another. One might compare this procedure to a perturbation 
theorist's use of matched asymptotic expansions. 

In the subsequent sections of this paper we demonstrate how this approach 
extends very naturally for the general case, where the crucial bound (1.14) must be 
enforced for all of the relevant frequencies of the problem. As the following example 
demonstrates, an appropriate stretching of the independent variable can ensure the 
bound (1.14) if it is not met in the original formulation of the problem. 

Example. The solution of the system 

dy/dt = (itP/E)y, y(O) = 1, t > 0, 0 < E << l, p E {1, 2, 3,... 

is given by 

y(t) = exp(itP+l/E(p + 1)). 

To enforce the bound (1.14) in a neighborhood of t = 0, we introduce a new variable 
t = as, where a is a positive constant, and obtain 

dy/ds = i(aP+?1/E)sPy =:a(s)y, y(0) = 1. 

For this example, as in many cases, it is sufficient to bound only the first derivative. 
We determine the largest a such that 

sup (Ida/dsl/max{ la(s) l, I}) < K, 
O<s<1 

where K is a constant of moderate size. For simplicity we take K = p and find 
a = El/(P+1). Thus we have obtained the stretched variables for 0 < t < 
t:= Ell/(P+ 1). For t = t1 + as the obvious modification of the previous bound gives 

a= tl, and we have the appropriate stretching for 0 < t < t2:= 2tl. This process 
can be continued, and after n steps we have obtained the proper stretching for the 
interval 0 < t < tn:= 2n-1e1(p+ 1). Thus the stretching is appropriately reduced as 
the distance from the turning point increases. For t > 1 the bound is achieved with 
no additional stretching. 

2. The General Problem. Let z = (z(), z(2) . ,z(n))T be an n-dimensional vector, 
and let A be an n x n matrix.** 

We consider the general system 

(2.1) z' = A(t)z + h(z, t) + f(t), z(TJ) = z0, T1 < t < T2 

and we assume 

(2.2a) suplA(t) - A(t)*l >> 1, 

**If z is a vector, then zT denotes its transpose and z* its adjoint. The vector norm is defined by 
IzI = maxkIz (k). Similar notations hold for matrix norms. For example, IAI = supzlAzl/lzl. " ' "denotes 
differentiation with respect to t, and a1l'v(t) = dva/dtv. CP(t) denotes the class of functions which have p 
continuous derivatives on the interval of interest. 
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(2.2b) sup IA(t) + A(t)*l < K, 

(2.2c) sup Ih(z, t)I < K, IZi = 1, 

(2.2d) supl(A(t) - cI)lf(t)l < K, 

(2.2e) Izol < K, 
(2.2f) JT2- T7'I < K, 

where K and c are constants of moderate size. Conditions for smoothness and their 
significance are outlined in the following assumptions and discussion. 

Assumption A. The matrix A(t) is in diagonal form with purely imaginary entries, 
each of which is in CP(t) and satisfies the bound (1.14): 

(2.3) A(t) = diag(i * all(t), i - a22(t),... ,i ann(t)), A(t) = -A(t)*- 

For convenience we introduce the vector A(t) defined by 

(2.4) A(t) = (i * all(t), i * a22(t),... * ann(.t)) 

The entries of A(t) are called the fundamentalfrequencies of the system (2.1). 
According to the restrictions (2.2), we need only consider the case where A(t) is 

antisymmetric since the symmetric part of A(t) can be absorbed by the other terms 
of the right-hand side. If A(t) is an analytic function of t in a domain which contains 
the interval of interest and A(t) is antisymmetric on that interval, then there exists 
an analytic unitary transformation which reduces A(t) to diagonal form on the 
interval (see Kato [1, p. 121]), and thus Assumption A is justified. If the conditions 
for smoothness are relaxed, then pathological cases can arise. Like Kato [1, p. 11] 
we quote an example due to Rellich. The symmetric matrix 

A(= exp(_l/t2)cos(2/t) sin(2/t) t1 0, 
A =t { [sin(2/t) -o(/)_ 

t[0 O] t = 0, 

is infinitely differentiable for all real values of t and has eigenvalues 

X +(t) = [?exp (_1/t2), t = 0, 

However, there does not exist a continuous parametrization of an eigenvector in a 
neighborhood of t = 0. 

Other difficulties are also possible in highly oscillatory systems. For example, the 
matrix 

(2.5) ~~~e [0 i ] 1 0] 

has eigenvalues 

X +=i/E?1/V- 
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Thus, if A(t) has Jordan structure as in the first term of (2.5), then a 0(1) 
perturbation of the system will cause the solutions to become unbounded as e 
approaches zero. 

Assumption B. The components of h(z, t) are polynomial in the components of z 
with coefficients { cm } which are in CP(t) and which satisfy the bound 

SUpIC[^](t)I < K (r = 0,l,.. ,p) 
t 

Here K is a constant of moderate size. 

If the nonlinearities of (2.1) are sufficiently smooth, then a polynomial approxima- 
tion can be made locally or globally. For example, let r(z, t) be a polynomial 
approximation to h(z, t) with 

suplh(z, t) - r(z, t)I < 8 
z, t 

for z and t in the range of interest. We shall demonstrate that under our assumptions 
the induced error is bounded by R3IT2- T7'1, where R is bounded in terms of 
constants of moderate size. 

Assumption C. f(t) is in CP(t) and satisfies the bound 

If [v] (t) I S K (v = 0, , ... 

where K is a constant of moderate size. 

Large forcing as permitted by (2.2d) also can be treated. However, we shall show 
that the more general problem can be reduced to this form, which is more 
convenient for theoretical purposes. We say that the system (2.1) satisfying Assump- 
tions A, B, and C is in stiff oscillatory form. 

As in the scalar problem (1.1), this system can be reduced to a more tractable 
formulation. Let S(t, s) be the solution operator of the system with h(z, t) 0 and 
f(t) 0. In fact, we can write 

(2.6) S(t, s) = diag exp[(itakk(r) dr)] 

Thus, with the change of variables 

(2.7) z = S(t, T1)x 

we reach a system in which the coefficients are bounded but some are rapidly 
oscillating: 

(2.8) x' = G(x, t), x(T1) = vo, T1 < t < T2 

The components of the terms on the right-hand side of the equation have the form 

(2.9) p(x)c(t)exp(fp(t) dt) 

where p(x) is monomial in the components of x, c(t) is in CP(t), and 0(t) has the 
form 

(2.10) e(t) = NTA(t) 
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Here N is an n-dimensional vector with integral components which depend on the 
polynomial form of the nonlinearities. Occurring combinations of this form are 
called relevant secondary frequencies, and the system (2.8) is said to be in nonstiff 
oscillatory form. The bound (1.14) must be enforced for each of the relevant 
secondary frequencies, and also the partitioning suggested in Section 1 must be 
introduced. Thus we are led to the following assumption, which is basic for our 
theory. 

Assumption D. Each relevant secondary frequency of the system (2.8) satisfies the 
bound (1.14). Moreover, the relevant secondary frequencies of -the system can be 
divided into two groups: 

nonoscillatory set: 

{<(t): supi+(AW| < MlI, 

oscillatory set: 

{+(t): inflo(t)l > MI > I , 

where MII is a constant of moderate size. 

The bound (1.14) is appropriate since the discretizations we shall employ are 
equivalent to polynomial interpolations of these functions, and we must insure that 
point values are sufficient for such representations (cf. (1.15)). The partitioning of 
the relative secondary frequencies is fundamental to our approach, whereby some 
modes are resolved fully while others are treated asymptotically. 

We can rewrite system (2.8) satisfying Assumption D as 

(2.11) x' = g,(x, t) + g,,(x, t) + fI(t) + f1(t), x(T1) = vo, T < t < T2 

where the subscripts reflect the partitioning given by Assumption D. Terms with the 
subscript I contain frequencies in the oscillatory set while terms with the subscript II 
contain frequencies in the nonoscillatory set. The forcing terms f I and f I contain all 
components of the form (2.9) with p(x) 1. The following assumption is needed to 
guarantee the well-posedness of the system. 

Assumption E. In correspondence to the system (2.11), the reduced system 

(2.12) V= gII(V, t) + fII(t), V(T1) = v0, T1 < t < T2, 

is well-posed and has a solution bounded in terms of constants of moderate size. 

For the case where turning points are not allowed, we developed in [5] an 
asymptotic theory based on linearizations about v(t) and the integration by parts of 
rapidly oscillating forcing functions. We now give the extension of these results to 
the more general system (2.11). The essential point is that each linearization yields a 
linear system of the form (2.11) with possibly different relevant secondary frequen- 
cies to which Assumption D must apply. 

THEOREM 2.1. Let the system (2.11) in nonstiff oscillatory form satisfy Assumptions 
D and E. Assume also that Assumption D holds for the linear systems obtained in the 
first K linearizations as done in [5] (k < p). Then for sufficiently large MI there exists 
an 

(2.13) Xk = X0 + (1/MI)X1 + (1/MI)2 X2 + 
*.. +(1/MI) kXk 
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such that we have 

(2.14a) sup xjxI < R, 

(2.14b) SUpIxk xl < R(1/MI)k+l, 

where R is bounded in terms of constants of moderate size. Each xj consists of a smooth 
component, which has a number of derivatives bounded in terms of constants of 
moderate size, and a rapidly oscillating component, which is given explicitly in terms of 
the coefficients of the system and the smooth components of the solution. 

Proof. The theorem follows directly from the theorems of [5], where we assumed 
that relevant secondary frequencies were either uniformly large or else identically 
vanishing. Terms corresponding to vanishing frequencies were simply absorbed into 
the nonoscillatory terms of the system. Actually, we need only assume that the 
frequencies which are not large can be adequately resolved. Since our assumptions 
guarantee this, we have the desired result. 

The results of [5] also give error estimates which justify the approximation of the 
nonlinearities by polynomials as in Assumption B; the original differential equation 
has simply been replaced by one that is nearby in a very natural sense. And also the 
same reference gives a formal procedure for developing the expansions so that 
repeated linearizations are unnecessary. The preceding theorem can be extended to 
give the degree of smoothness of each correction. 

3. Reduction to Stiff Oscillatory Form. If the character of an oscillatory problem is 
essentially harmonic, then one should be able to achieve the form (2.1) so long as the 
coefficients and the nonlinearities are sufficiently smooth. We now extend our basic 
results to systems of the form 

xf = A(t)x + f1(y, t) + f2(x,y, t), 

(3.1) y= f3(x,y, t), 

x(T1) = x0, y(T1) = y0, T1 < t < T2. 

Here x and y are vectors of possibly different dimensions. We assume that the 
system with f- 0 satisfies all the assumptions of Section 2. We are interested in the 
case where 

(3.2) sup l(A(t) - cI) 1f1(y, t)l <'K, 

where c and K are constants of moderate size. We now introduce the appropriate 
assumption. 

Assumption F. f'(k)(y, t) is polynomial in the components of y with coefficients 
{ dmk(t)} which are in CP(t) and which satisfy the bound 

(3.3) supid [" k(t)1(akk -c)|I < K (^ = 0,1,. ... ,p). 
t 

Here c and K are constants of moderate size. 

By inspection we have the following useful result, which justifies Assumption C. 
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THEOREM 3.1. If the system (3.1) satisfies the preceding assumption, then the system 
for 

(3.4) x = x +(A(t) - cI) f (y, t) 

and y is in stiff oscillatory form. 

A similar transformation was introduced in [3], where the goal for such systems 
was to characterize the solutions which have a number of bounded derivatives. Other 
techniques based on linearization also can lead to systems of the form (2.1). 

Many important applications arise in celestial mechanics. In particular, we can 
apply our techniques to the calculation of orbits of satellites. For many of these 
problems, the dominant forces are due to a spherically symmetric Newtonian 
potential perturbed by small effects, and, as Laplace noted, a change of variables 
will reduce such a system to the form (3.1). We consider a very simple model taken 
from [7], where a number of examples and references can be found. In dimensionless 
polar coordinates, the equations for the planar motion of a satellite about a planet 
are 

(3.5) r" - r(6,)2 = -l/r2 + ef1(r, 6, r', '), 

r6" + 2r'O' = ef2(r, 6, r', 6'), 

where e, the small parameter, measures the ratio of the small perturbing force to the 
gravitational force. For E = 0 the solution, which is available in any text on 
dynamics, indicates that u = l/r is a harmonic function of 6. Like Laplace we now 
transform the variables from r and 6 as functions of t to u and t as functions of 0. 
Denoting the 6-derivative of u by u, we have 

(3.6) u +u - u4t 2 = -Eu2 2(f1 +(uyu)f2), 

(U2t*)*= -EU3t 3f2 . 

If fi and f2 are smooth functions of u, u, and t- only, then the system with 

dependent variables 

(3.7) X(1) U, = 
()-- y(l)= u2 

and independent variable 

(3.8) =ES 

has the form (3.1). Thus, if polynomial approximations for the nonlinearities can be 

made, we can reduce the problem to stiff oscillatory form. The time history is given 

by the equation 

(3.9) t* = y(1)/X(1)2 

which must be included in the analysis if fi or f2 depends on t; we shall discuss the 

details of this in a future paper. 

4. Difference Methods. The constructive approach we have taken leads very 

naturally to methods which are suitable for accurate computation with large time 

steps. We consider the system (2.11) in nonstiff oscillatory form and satisfying the 

assumptions of Theorem 2.1. Since the relevant secondary frequencies can be 

determined a priori, one can make the stretching necessary to enforce the bound 



90 ROBERT E. SCHEID, JR. 

(1.14) before any computations are performed. Transitions between the oscillatory 
and nonoscillatory sets can be controlled by a procedure analogous to the one 
specified by (1.17), since estimates similar to (1.10) and (1.16) also hold for the 
general case. Then, for sufficiently small h, frequencies in the nonoscillatory set will 
be of moderate size while frequencies in the oscillatory set will be sufficiently large. 

If analytic forms are not available, then the integrals of the relevant secondary 
frequencies can be approximated by quadrature. Thus, if a qth order integrator 

Iq(-, tl, t2) is chosen (q < p), we have 

(4.1) Iq(Sb, tl, t2)- f (t() dt < Rlt2 - tll sup [max{l(s)j,1}] )h , 
t2 S 

where R is bounded in terms of constants of moderate size. If 4(t) belongs to the 
oscillatory set, then the phase distortion induced by this approximation does not 
effect the other calculations. 

The t-derivatives resulting from the successive linearizations can be approximated 
by differences without difficulty. Then, the smooth component of each term in the 
expansion (2.13) can be approximated by standard numerical techniques, since the 
equations are not stiff, while the rapidly oscillating component is given explicitly. If 
some frequencies in the oscillatory set are much larger than others, then fewer 
integrations will be required for the corresponding terms; appropriate modifications 
in the theory can be made by a further partitioning of the oscillatory set. In any case, 
the errors induced by these approximations must remain bounded by arguments 
similar to those of Theorem 2.1. 

EU, 

rn tU-- 
LU 

L 

V) ~~~~~~~~~~v (t) 

t9 S 

l . . ~~~~~~. i.u2.9 
-2.000 -1.000 0.000 1.000 2.1 

FIGURE 1 
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TABLE 1 

I J Roh t, (oy(tj)) IufY(t)) FRLR(tj) 

0.100 0 -2.0000 1.00000 0.00000 O.OE+00 
0.100 2 -1.8000 1.00107 -0.00129 0.9OE-05 
0.100 4 -1.0000 0.99113 -0.00677 0.1E-03 
0.100 6 -1.4000 0.99973 -0.00829 0.1E-03 
0.100 8 -1.2000 0.99352 -0.01050 0.2E-03 
0.100 10 -1.0000 0.99826 0.00721 0.4E-04 
0.050 12 -0.9000 0.99165 -0.01260 0.4E-04 
0.050 14 -0.8000 0.98892 0.00797 O.SE-04 
0.050 16 -0.7000 1.00420 0.00904 0.6E-04 
0.050 18 -0.6000 1.00840 0.00842 0.7E-04 
0.050 20 -0.5000 0.99741 0.01743 0.1E-03 
0.025 22 -0.4500 1.00870 -0.02025 0.1E-03 
0.025 24 -0.4000 0.97171 -0.00420 0.1E-03 
0.025 26 -0.3500 1.00153 0.02518 0.1E-03 

I 0.025 28 -0.3000 1.02715 -0.01301 0.1E-03 
0.025 30 -0.2500 0.98836 -0.03937 0.11E-03 
0.025 32 -0.2000 0.95287 -0.01222 0.1E-03 
0.025 34 -0.1500 0.95326 0.03179 0.1E-03 
0.025 36 -0.1000 0.98220 0.06779 0.1E-03 
0.050 38 0.0000 1.08236 0.10200 0.1E-03 
0.050 40 0.1000 0.20317 0.15097 0.1E-03 
0.050 42 0.2000 1.20994 0.28779 0.1E-03 
0.025 44 0.2500 1.14090 0.29565 0.1E-03 
0.025 46 0.3000 1.11363 0.24000 0.1E-03 
0.025 48 0.3500 1.16308 0.20580 0.1E-03 
0.025 SO 0.4000 1.18836 0.26220 0.1E-03 
0.025 52 0.4500 1.13042 0.25888 0.1E-03 
0.025 54 0.5000 1.16518 0.21792 0.1E-03 
0.050 56 0.6000 1.14675 0.22434 0.2E-03 
0.050 58 0.7000 1.15234 0.22559 0.2E-03 
0.050 60 0.8000 1.17186 0.23485 0.2E-03 
0.050 62 0.9000 1.15608 0.26028 0.1E-03 
0.050 64 1.0000 1.15907 0.23090 0.2E-03 
0.100 66 1.2000 1.15570 0.25631 0.3E-03 
0.100 68 1.4000 1.14887 0.25014 0.4E-03 
0.100 70 1.6000 1.16079 0.25278 0.2E-03 
0.100 72 1.8000 1.15089 0.24039 0.3E-03 
0.100 74 2.0000 1.15296 0.23930 0.2E-03 

| j is the number of the grid point I 
tj is the value of t at thejth grid point I 
h is the time step at thejth grid point 

Thus the system (2.11) is suitable for numerical approximation with a large time 
step. Two computational examples were given in [5], where we precluded the 
possibility of turning points. Here we present an example which corresponds to such 
a passage through resonance. 

Example 4.1. We consider the system 

y' = exp(it2/2e)y2, y(-2) = 1, -2 < t < 2, e = .01, 

which one might have derived from the system 

z' = (it/E)z + Z2, z(-2) = exp(2i/E), -2 < t < 2, E = .01, 

after the change of variables (2.7). We propose to solve this system to within three or 
four digits of accuracy. Complete details of the calculations are given in [6], where 
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we have included the resulting algebra. Smooth components were resolved by means 
of a fourth-order Runge-Kutta solver with a time step sufficient so that the 
estimated local truncation error would be bounded by Rh(10-3), where R is a 
constant of moderate size. For this example we adjusted the step size by a factor of 
(1/2) or (2) as required. One can estimate the local truncation error by comparing 
the result of two increments with the result of one double-increment (see, for 
example, Lambert [4]). The t-derivatives brought about by the linearizations were 
determined analytically rather than estimated by differences. For the range 

1 < ItI < 2 

only one integration was required, while for the range 

1/2 Itl < 1 

several integrations were required. And finally all frequencies were fully resolved in 
the range 

ItI < 1/2. 

All calculations were done with single-precision accuracy on a VAX11/780 
computer. Plots of the resulting approximations to 

u = Re{ y) - .8 and v = Im{ y) 

illustrate the passage through resonance in Figure 1, where we have linearly 
interpolated the amplitudes and phases between grid points. In Table 1 we compare 
the computed grid values with the accepted function values, which were computed 
with double-precision accuracy by means of a fourth-order Runge-Kutta scheme 
with a time step h = 10-4. In the table we list 

ERR(t) = max[IRe{ y - I 1, IIm{ y -Y i], 
where y(t) and y(t) are respectively the computed and the accepted function values. 
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